RELATIVE VOLUME COMPARISON WITH INTEGRAL RADIAL CURVATURE BOUNDS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RELATIVE VOLUME COMPARISON WITH INTEGRAL CURVATURE BOUNDS P. Petersen and G. Wei

In this paper we shall generalize the Bishop-Gromov relative volume comparison estimate to a situation where one only has an integral bound for the part of the Ricci curvature which lies below a given number. This will yield several compactness and pinching theorems.

متن کامل

Comparison Geometry with Integral Curvature Bounds

In this paper we shall generalize a formula of Heintze and Karcher for the volume of normal tubes around geodesics to a situation where one has integral bounds for the sectional curvature. This formula leads to a generalization of Cheeger’s lemma for the length of the shortest closed geodesic and to a generalization of the Grove-Petersen finiteness result to a situation where one has integral c...

متن کامل

Volume Comparison with Integral Bounds in Lorentz Manifolds

Ten years ago, Ehrlich and Sanchez produced a pointwise statement of the classical Bishop volume comparison theorem for so-called SCLV subsets of the causal future in a Lorentz manifold, while Petersen and Wei developed and proved an integral version for Riemannian manifolds. We apply Peterson and Wei's method to the SCLV sets, and verify that two essential differential equations from the Riema...

متن کامل

Relative volume comparison theorems in Finsler geometry and their applications

We establish some relative volume comparison theorems for extremal volume forms of‎ ‎Finsler manifolds under suitable curvature bounds‎. ‎As their applications‎, ‎we obtain some results on curvature and topology of Finsler manifolds‎. ‎Our results remove the usual assumption on S-curvature that is needed in the literature‎.

متن کامل

Manifolds with Minimal Radial Curvature Bounded from below and Big Volume

We prove that a convergence in the Gromov-Hausdorff distance of manifolds with minimal radial curvature bounded from below by 1 to the standard sphere is equivalent to a volume convergence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2004

ISSN: 1015-8634

DOI: 10.4134/bkms.2004.41.2.213